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Abstract. The incorporation of a comprehensive crop module in land surface models offers the possibility to study 

the effect of agricultural land use and land management changes on the terrestrial water, energy and 

biogeochemical cycles. It may help to improve the simulation of biogeophysical and biogeochemical processes on 15 

regional and global scales in the framework of climate and land use change. In this study, the performance of the 

crop module of the Community Land Model version 5 (CLM5) was evaluated at point scale with site specific field 

data focussing on the simulation of seasonal and inter-annual variations in crop growth, planting and harvesting 

cycles, and crop yields as well as water, energy and carbon fluxes. In order to better represent agricultural sites, 

the model was modified by (1) implementing the winter wheat subroutines after Lu et al. (2017) in CLM5; (2) 20 

implementing plant specific parameters for sugar beet, potatoes and winter wheat, thereby adding these crop 

functional types (CFT) to the list of actively managed crops in CLM5; (3) introducing a cover cropping subroutine 

that allows multiple crop types on the same column within one year. The latter modification allows the simulation 

of cropping during winter months before usual cash crop planting begins in spring, which is a common agricultural 

management technique in humid and sub-humid regions. We compared simulation results with field data and found 25 

that both the parameterization of the CFTs, as well as the winter wheat subroutines, led to a significant simulation 

improvement in terms of energy fluxes, leaf area index (LAI), net ecosystem exchange (RMSE reduction for latent 

and sensible heat by up to 57 % and 59 % respectively) and crop yield (up to 87 % improvement in winter wheat 

yield prediction) compared with default model results. The cover cropping subroutine yielded a substantial 

improvement in representation of field conditions after harvest of the main cash crop (winter season) in terms of 30 

LAI curve and latent heat flux (reduction of winter time RMSE for latent heat flux by 42 %). We anticipate that 

our model modifications offer opportunities to improve yield predictions, to study the effects of large-scale cover 

cropping on energy fluxes, soil carbon and nitrogen pools, and soil water storage in future studies with CLM5.  

1 Introduction 

Crop yield is highly influenced by environmental conditions – weather, nutrient availability, atmospheric CO2 – 35 

and agricultural practices such as irrigation and fertilizer application. Global climate change is widely believed to 

have an important impact on future agriculture and consequently food security under changing climate is an 

important research topic (Lobell et al., 2011; Aaheim et al., 2012; Ma et al., 2012; Gosling, 2013; Rosenzweig et 

al., 2014). Numerous current crop yield predictions for the 21st century show declining global yield trends and 
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increasing irrigation requirements (Urban et al., 2012; Challinor et al., 2014; Deryng et al., 2014; Rosenzweig et 40 

al., 2014; Tai et al., 2014; Levis et al., 2018). General agricultural practices have adapted to changes in climate 

and inter-annual climate variability by adjusting irrigation amounts and fertilizer application as well as cultivating 

more resistant varieties of certain crops (Kucharik et al., 2006; Kucharik, 2008). Also, the biogeochemical effects 

and benefits of cover crops as well as their potential to mitigate climate change are the focus of many studies 

(Sainju et al., 2003; Lobell et al., 2006; Plaza-Bonilla et al., 2015; Basche et al., 2016; Carrer et al., 2018; 45 

Lombardozzi et al., 2018; Hunter et al., 2019). The planting of cover crops is a common agricultural management 

practice in humid and sub-humid regions to reduce soil erosion, consolidation, and nitrogen leaching and to 

increase agricultural productivity by nitrogen fixation (Sainju et al., 2003; Lobell et al., 2006; Basche et al., 2014; 

Plaza-Bonilla et al., 2015; Tiemann et al., 2015; Kaye and Quemada, 2017). 

With a trend of declining yield and increasing uncertainty in yields in many parts of the world, understanding the 50 

impact of climate change on crop production and improving the prediction of it is a research topic of great 

importance to society. Hence, the evaluation and advancement of integrated modelling approaches with adequate 

incorporation of crop phenology, the capacity to simulate realistic land management and crop yield in response to 

climate conditions on regional and global scale are the focus of many studies (Stehfest et al., 2007; Olesen et al., 

2011; Van den Hoof et al., 2011; Rosenzweig et al., 2014). The incorporation of a comprehensive crop module in 55 

land surface models offers the possibility to study changes in water and energy cycles and crop production in 

response to climate, environmental, land use, and land management changes and may help to improve the 

simulation of biogeophysical and biogeochemical processes on regional and global scales (Kucharik and Brye, 

2003; Lobell et al., 2011; Lawrence et al., 2018).  

The recent versions of CLM (i.e. 4.0, 4.5 and 5.0) adopted the prognostic crop module from the Agro-Ecosystem 60 

Integrated Biosphere Simulator (Agro-IBIS) (Kucharik and Brye, 2003), which has the ability to simulate the soil-

vegetation-atmosphere system including crop yields, and has been evaluated in multiple studies (Twine and 

Kucharik, 2009; Webler et al., 2012; Xu et al., 2016). Even the simplified version of the Agro-IBIS crop scheme 

that was implemented in CLM4 led to improved simulation of climate-crop interactions and more comprehensive 

ecosystem balances than previous CLM versions (Levis et al., 2012). Evaluation studies of CLM4 by Levis et al. 65 

(2012) and Chen et al. (2015) revealed significant sensitivities of energy and carbon fluxes to biases in crop 

phenology, especially for the seasonality of the net ecosystem carbon exchange for managed crop sites where the 

flux is governed by planting and harvest times. First evaluation studies of the CLM-Crop representation of plant 

hydraulics and its ability to represent crop growth cycles and ecosystem balance of crop sites are available by 

Bilionis et al. (2015) for CLM4.5. 70 

In the latest version, CLM (CLM5) has been extended with an interactive crop module that includes fertilizer and 

irrigation scheme, eight actively managed crop types (temperate soybean, tropical soybean, temperate corn, 

tropical corn, spring wheat, cotton, rice, and sugarcane), irrigated and unirrigated unmanaged crops. However, so 

far, only very few studies have evaluated CLM5 with respect to crop simulation performance (e.g. crop yield, 

growth cycle representation and carbon budgets for agricultural ecosystems) either at single points or at regional 75 

and global scales (e.g. Chen et al., 2018; Sheng et al., 2018). 

Chen et al. (2018) emphasize the importance of model performance evaluations at point scale over long timescales 

given that plant properties, soil properties and climate vary significantly between sites and the reliable simulation 

of long-term energy and carbon fluxes and variations in plant phenology remain an important challenge. An 

assessment of the performance of CLM5 in simulating crop yields at the regional level was conducted by Sheng 80 
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et al (2018), who used CLM5 to simulate crop yield in northeast China. For maize, they found a general 

overestimation of LAI and an underestimation of stem and leaf carbon during the growing season, compared to 

observation data and statistical reports, as well as significant discrepancies in simulated and recorded harvesting 

and planting dates which resulted in a general overestimation of crop yield (Sheng et al., 2018).  

The overall aim of this study is to evaluate and enhance the performance of the crop module of CLM5 focussing 85 

on the representation of seasonal and inter-annual variations in crop growth, planting and harvesting cycles, and 

crop yields as well as energy and carbon fluxes. Simulations were carried out for four cropland reference sites of 

the ICOS (Integrated Carbon Observation System) and TERENO (Terrestrial Environmental Observatory) 

networks in central Europe. In order to improve the representation of crop growth as well as energy fluxes on 

agricultural fields at the point scale, several modifications were made within the code and the parameter 90 

configuration of the crop module. Firstly, we transferred and adapted the modified vernalization and cold tolerance 

routine by Lu et al. (2017) to the CLM5 code and tested it for several single point study sites. Secondly, modified 

parameter sets for winter wheat, sugar beet and potatoes were gathered from the literature and adopted from 

observation data and were tested at point scale. Finally, we extended CLM5 by adding a new cover cropping 

subroutine that models the growth of winter cover crops and the rotation from a summer to a winter crop within 95 

the same year.  

2 Materials and Methods 

2.1 Community Land Model 

In general, land surface models such as CLM5 are broadly applied in scientific studies to simulate water, energy 

and nutrient fluxes in the terrestrial ecosystem (Niu et al., 2011; Han et al., 2014; Lawrence et al., 2018; Naz et 100 

al., 2019). CLM5 represents the latest version of the land component in the Community Earth System Model 

(CESM) (Lawrence et al., 2018). Within the model, simulated land surface fluxes such as latent and sensible heat 

are driven by atmospheric/meteorological input variables in combination with soil and vegetation states (e.g. soil 

moisture and LAI) and parameters (e.g. hydraulic conductivity, land cover) (Oleson et al., 2010; Lawrence et al., 

2011; Lawrence et al., 2018). The new biogeochemistry and crop module of CLM5 (BGC-Crop) adopted the 105 

prognostic crop module from the Agro-Ecosystem Integrated Biosphere Simulator (Agro-IBIS) (Kucharik and 

Brye, 2003). This incorporation of agriculturally managed land cover may help to improve the general 

representation of biogeochemical processes on the global scale to better address challenges from land use changes 

and agriculture practices (e.g. Lobell, Bala, and Duffy, 2006). The CLM5 crop module includes new crop 

functional types, updated fertilization rates and irrigation triggers, a transient crop management option as well as 110 

some adjustments to phenological parameters. Also extensive modifications have been made to the grain C and N 

pool, e.g. C for annual crop seeding comes from the grain C pool and initial seed C for planting is increased from 

1 to 3 gCm-2 (Lawrence et al., 2018).  

Vegetated land units are separated into natural vegetation and crop land units, with only one CFT on each soil 

column, including CFT specific land management techniques such as irrigation and fertilization (Lawrence et al., 115 

2018). A total of 78 plant and crop functional types are included in CLM5 including an irrigated and unirrigated 

unmanaged C3 crop, eight actively managed crop types - spring wheat, temperate and tropical corn, temperate and 

tropical soybean, cotton, rice and sugarcane and 23 crop types without specific crop parameters associated that are 

merged to the most closely related and parameterised CFTs (Lawrence et al., 2018). For the simulation of those 

https://doi.org/10.5194/gmd-2020-241
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



4 

inactive crop types, the specific crop parameters of the spatially closest and most similar out of the eight active 120 

crop types are used. Irrigation is simulated dynamically for defined irrigated CFTs in response to soil moisture 

conditions and is partly based on the implementation of Ozdogan et al. (2010) (Leng et al., 2013; Lawrence et al., 

2018).  

Besides water availability from irrigation and precipitation, crop yield and food productivity greatly depends on 

fertilization. In CLM5-BGC-Crop, fertilization is represented by adding nitrogen directly to the soil mineral pool 125 

(Lawrence et al., 2018). Fertilization dynamics and annual fertilizer amounts depend on the crop functional types 

and vary spatially and yearly based on the Land Use Model Intercomparison Project (Lawrence et al., 2019) land 

use and land cover change time series. In CLM5, land fractions of natural vegetation are not influenced by fertilizer 

application. In cropping units, mineral fertilizer application starts during the leaf emergence phase of crop growth 

and continues for 20 days. Manure nitrogen is applied at slower rates (0.002 kg N m-2 per year by default) to 130 

prevent rapid denitrification rates that were observed in earlier CLM versions so that more uptake by the plant is 

achieved. 

CLM5-BGC-Crop is fully prognostic with regards to carbon and nitrogen in the soil, vegetation and litter at each 

time step. Allocation of assimilated carbon to the different segments of the plant (leaf, stem, root and reproductive 

pool) is linked to the phenology phases and ends with the harvesting of the crop. The total amount of assimilated 135 

carbon is regulated by availability of soil nitrogen. The allocation of nitrogen is based on the specific C/N ratios 

in plant tissue that vary throughout the growing season and is therefore also related to crop phenology phases 

(Lawrence et al., 2018).   

The crop phenology as well as the carbon and nitrogen cycling processes follow three phenology phases: phase 

(1) from planting to leaf emergence, phase (2) from leaf emergence to beginning of grain fill and phase (3) from 140 

beginning of grain fill to maturity and harvest. These phenology phases are governed by temperature thresholds 

and the percentage of Growing Degree Days (GDD) required for maturity of the crop with harvest occurring when 

maturity is reached (Lawrence et al., 2018).  

The first phenology stage, planting, starts when crop specific 10-day mean temperature thresholds (of both the 

daily 2-m air temperature T10d and the daily minimum 2-m air temperature Tmin,10d) are met. The transition from 145 

planting to leaf emergence (phase 2) begins when the growing degree-days of soil temperature at 0.05 m depth 

(GDDTsoi) reaches 1 - 5 % of the GDD required for maturity (GDDmat), depending on a crop specific base 

temperature for the GDDTsoi. Grain fill (phase 3) starts with either the simulated 2-m air temperature (GDDT2m) 

reaching a heat unit threshold (h) of 40 – 65 % of GDDmat or when the maximum leaf area index (Lmax) is reached. 

The crop is harvested in one time step when 100 % GDDmat is reached or when the crop specific maximum number 150 

of days past planting is exceeded. The LAI is dependent on the specified specific leaf area (SLA) and the calculated 

leaf C. The SLA as well as the maximum LAI are specified for each crop in the parameter file (Table A2).  

Allocation of assimilated carbon as well as the allocation to leaf, stem, root and reproductive pools is linked to the 

crop phenology phases and ends with harvest of the crop. The total amount of assimilated carbon is regulated by 

availability of soil nitrogen, among other resources. The allocation of nitrogen is based on the specific C/N ratios 155 

in plant tissue (varying for roots, stem, leaves, reproductive pools) that vary throughout the growing season and 

are also related to crop phenology phases (Lawrence et al., 2018). Carbon allocation begins during leaf emergence 

and is specified using allocation coefficients which represent the fraction of available C that is available to be 

allocated to each C pool.  
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Nitrogen allocation of crops depends on the soil mineral nitrogen concentration and the crop specific C/N ratios 160 

for each plant segment – leaves, stems, roots and reproductive organs.  The nitrogen allocation scheme uses two 

different C/N ratios for each crop based on the phenology stages to account for the generally lower C/N ratios 

early in the growth cycle, higher ratios in later growth stages and the N retranslocation during grain fill. 

For a detailed technical description of the model and all its features, the reader is referred to the technical 

documentation of CLM5 (Lawrence et al., 2018). 165 

2.2 Model modifications 

In the course of this study, three main limitation of CLM5 for the intended simulation of agricultural sites in 

Western Europe at point scale were identified: (1) the default CLM5-BGC-Crop code and parameterization yielded 

a very poor representation of crop growth of winter wheat and other winter crops, (2) the default plant parameter 

data set lacks specific parameterization for several important cash crops (here especially sugar beet and potatoes), 170 

and (3) CLM5-BGC-Crop does not allow a second crop growth onset or a second CFT to be grown on the same 

field within one year. These limitations were met by modifications to the code structure and parameterization of 

the CLM5-BGC-Crop module described below.  

2.2.1 Winter cereal representation 

Vernalization (exposure to a period of non-lethal low temperatures required to enter the flowering stage for winter 175 

crops) is a very significant process that distinguishes winter from summer cereal varieties. It influences the cold 

tolerance of the crop and allows successful cultivation of winter crops during the colder months (Barlow et al., 

2015; Chouard, 1960). In general, the vernalization process ensures that the reproductive development of plants 

growing over winter (winter crops and also natural vegetation) does not start in late summer or fall but rather in 

late winter or spring.  180 

Lu et al. (2017) introduced vernalization cold tolerance subroutines in CLM4.5 to better simulate winter cereal 

LAI and grain yield. For this, they adapted the winter wheat vernalization model from Streck et al. (2003). Streck 

et al. (2003) evaluated their vernalization algorithm for a wide range of winter wheat cultivars for the purpose of 

being used in crop model approaches. The vernalization process starts after leaf emergence and ends before 

flowering (Streck et al., 2003). The daily vernalization dependence is calculated based on the crown temperature 185 

(Tcrown) and the optimum vernalization temperature (Topt) limited to times when the crown temperature lies within 

the minimum to maximum vernalization temperature (Tmin and Tmax) range:  

𝛼 =
𝑙𝑛2

𝑙𝑛[(𝑇max−𝑇min)/(𝑇opt−𝑇min)]
         (1) 

𝑣𝑑 = ∑ fvn(𝑇crown) =
[2(𝑇crown−𝑇min)

𝛼(𝑇opt−𝑇min)
𝛼
−(𝑇crown−𝑇min)

2𝛼]

(𝑇opt−𝑇min)
2𝛼      (2) 

𝑣𝑓 =
𝑣𝑑5

22.55+𝑣𝑑5
           (3) 190 

where vd [-] is the sum of the sequential vernalization dependence, fvn [-] is the daily vernalization rate, vf [-] is 

the vernalization factor, Tcrown [K] is the crown temperature, Topt [K], Tmax [K] and Tmin [K] are the optimum, 

maximum and minimum vernalization temperatures respectively.  

The crown temperature (Tcrown) is assumed to be slightly higher than the 2-m air temperature (T2m) in winter when 

covered by snow. It is calculated separately for temperatures below and above the freezing temperature (Tfrz):  195 

𝑇crown = 2 + (𝑇2𝑚 − 𝑇frz) ∗ (0.4 + 0.0018 ∗ (min(𝐷snow ∗ 100, 15) − 15)2 
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for  T2m < Tfrz           (4) 

𝑇crown = 𝑇2𝑚 − 𝑇frz 

for  T2m > Tfrz            (5) 

where Tcrown [K] is the calculated crown temperature, T2m [K] is the 2-m air temperature, Tfrz [K] is the freezing 200 

point and Dsnow [m] is the snow height.  

The vernalization factor is then used in the cold tolerance subroutine to assess the cumulative cold hardening of 

the plant and its dehardening process when exposed to higher temperatures (see below) and in the adjustment of 

the GDDs since planting. The GDDs since planting as well as the allocation of C to the grain pool are multiplied 

by the vernalization factor at each time step. This leads to a reduced growth rate in the beginning of the phenology 205 

cycle when the plant is not fully vernalized (vf < 1).   

Furthermore, Lu et al. (2017) implemented a cold tolerance subroutine using the approaches after Bergjord et al. 

(2008) and Vico et al. (2014). The damage from low temperatures is quantified by three main variables: the 

temperature at which 50 % of the plant is damaged (LT50), the survival probability (fsurv) and winter killing degree 

days (WDD) (Bergjord et al., 2008; Lu et al., 2017; Vico et al., 2014). A detailed description of these approaches 210 

can be found in Bergjord et al. (2008) and Vico et al. (2014).  

The temperature at which 50 % of the plant is damaged (LT50) is calculated interactively at each time step 

depending on the previous time step and on several accumulative parameters. These parameters are the exposure 

to near-lethal temperatures (rates), the cold hardening or low temperature acclimation (contribution of hardening 

– rateh), the loss of hardening due to the exposure to a period of higher temperatures (dehardening – rated) and 215 

stress due to respiration under snow (rater) that are each functions of the crown temperature (Lu et al., 2017 and 

references therein).  

The survival rate (fsurv) is calculated as a function of LT50 and the crown temperature. The probability of survival 

increases once the crown temperature is higher than LT50 or decreases when it is lower (Vico et al., 2014):   

𝑓surv(𝑇crown, 𝑡) = 2
−
𝑇crown
𝐿𝑇50

𝛼surv

         (6) 220 

The winter killing degree day (WDD) is calculated as a function of crown temperature and survival probability. 

When the survival probability and crown temperature are low, the WDD will be high (Vico et al., 2014).   

𝑊𝐷𝐷 = ∫ 𝑚𝑎𝑥[(𝑇base − 𝑇crown),0][1 − 𝑓surf(𝑇crown, 𝑡)]𝑑𝑡



winter

 

where Tbase  = 0 °C.           (7) 

Lower LT50 indicate a higher frost tolerance and would result in higher survival rates and thus smaller WDD and 225 

less cold damage to the plant.  

Lu et al. (2017) implemented a relationship between frost damage described above and the subsequent growth or 

carbon allocation of the plant. Whenever the survival factor is less than 1, a small amount of leaf carbon (5 g C m-

2 per model time step) as well as a small amount of leaf nitrogen (scaled by the prescribed C/N target ratios, Table 

1 and Table A2) are transferred to the soil carbon and nitrogen litter pool thus simulating a reduction in growth 230 

and/or damage of small/young leaves and seedlings. Additionally, in order to simulate more drastic and 

instantaneous damage or death of the plant due to a longer duration of lethal temperatures (most likely to occur in 

spring when the plant has emerged and is close to or already fully vernalized), a second frost damage function is 

implemented. When WDD > 1° days the frost damage function is triggered, leading to severe crop damage by 

transferring leaf carbon (amount scaled by the survival probability (1 -fsurv)) to the soil carbon litter pool.   235 
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2.2.2 Extended Parameterization 

Table 1: CFT specific phenology and CN allocation parameters. 

Parameter CLM variable name Units 

Phenology 

Minimum planting date for the Northern Hemisphere min_NH_planting_date MMDD 

Maximum planting date for the Northern Hemisphere max_NH_planting_date MMDD 

Average 5 day daily temperature needed for planting planting_temp K 

Average 5 day daily minimum temperature needed for planting min_planting_temp K 

Minimum growing degree days gddmin °days 

Maximum number of days to maturity mxmat Days 

Growing Degree Days for maturity hygdd °days 

Base Temperature for GDD baset °C 

Maximum Temperature for GDD mxtmp °C 

Percentage of GDD for maturity to enter phase 3 lfemerg % GDDmat 

Percentage of GDD for maturity to enter phase 4 grnfill % GDDmat 

Canopy top coefficient ztopmax M 

Maximum Leaf Area Index laimx m2/m2 

Specific Leaf Area  slatop m2/gC 

CN ratios and allocation 

Leaf C:N leafcn gC/gN 

Minimum leaf C:N leafcn_min gC/gN 

Maximum leaf C:N leafcn_max gC/gN 

Fine root C:N frootcn gC/gN 

Grain C:N graincn gC/gN 

Fraction of leaf N in Rubisco flnr fraction/gNm-2 

 

In order to yield a reasonable representation of agricultural areas on the regional scale in future studies, the default 

parameter set was extended with specific crop parameters for sugar beet, potatoes, and winter wheat based on the 240 

characteristics of our study sites to better fit the observed plant phenology and energy fluxes at the simulation sites.  

In selecting parameters to be modified, the sensitivity analysis and parameter estimation studies by Post et al. 

(2017) (for version 4.5), Cheng et al. (2020) and Fisher et al. (2019) (for version 5.0) were taken into account. Key 

parameters as identified by previous studies (Sulis et al., 2015; Post et al., 2017; Lu et al., 2017; Fisher et al., 2019; 

Cheng et al., 2020) are listed in Table 1. These parameters were adjusted with values from the literature or site-245 

specific observations to match observed values. General phenology parameters such as the maximum canopy 

height, planting temperatures, maximum LAI, maximum and minimum planting dates and days for growing were 

adjusted according to field documentation data and the respective site planting and harvest dates. Records on 

planting and harvest dates as well as crops that were planted for all study sites are listed in Table A1. C/N ratios 

in leaves and roots for wheat and sugar beet were adapted from Whitmore and Groot (1997), Gan et al. (2011), 250 

Sánchez-Sastre et al. (2018) and Zheng et al. (2018). The specific leaf area (slatop) and the fraction of leaf N in 

Rubisco (flnr) for sugar beet and winter wheat were taken from Sulis et al. (2015) and references therein and 

adopted also for potatoes. A full list of default and modified parameters for the CFTs temperate corn, spring wheat, 

sugar beet, potatoes and winter wheat can be found in Table A2.  
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2.2.3 Cover cropping scheme 255 

The effect of cover crops on the physical and biogeochemical properties of the land surface alters latent heat flux, 

albedo and soil carbon and nitrogen storage and can potentially impact local and regional climate (Sainju et al., 

2003; Lobell et al., 2006; Möller and Reents, 2009; Plaza-Bonilla et al., 2015; Basche et al., 2016; Carrer et al., 

2018; Lombardozzi et al., 2018; Hunter et al., 2019).  

In the default BGC phenology, the growth algorithm starts in the beginning of each year, when the crop is not alive 260 

on the specific patch. Furthermore, the CLM structure does not allow multiple CFTs to coexist on the same column 

so that multiple planting phases related to cover cropping over winter months or crop rotations with winter and 

summer crops, both being very common practices in Europe and worldwide, cannot be accounted for. This might 

also be an issue when representing ecosystems where agricultural management practices involve multiple sowing 

and harvest cycles in accordance with the monsoon season (e.g. India). Therefore, a cover cropping subroutine 265 

was implemented in the BGC phenology module that affects the onset/offset (crop cycle/fallow) algorithm to allow 

a second onset period (crop cycle) on the same column.  

A cover crop flag was introduced in the parameter file and in the source code. This flag can be set for any CFT in 

the parameter file and calls the cover-cropping subroutine when it is set to true (covercrop_flag ≠ 0). This allows 

a flexible handling of this option as well as an application on a larger scale. With this modification, the onset 270 

period can start again within one simulation year for another (or the same) CFT. For example, when the maturity 

of the crop is reached and it has been harvested, the model would by default switch to the next stage (phase 4) 

where the crop is not alive and the offset (fallow) period begins. The next onset period and GDD accumulation for 

planting would then start in the subsequent simulation year. In our modified CLM5 version, the cover-cropping 

subroutine is called before entering into the offset period when the cover-crop flag for the current CFT is set to 275 

true. In the cover-cropping subroutine, the CFT is then changed according to a predefined rotation scheme and 

another onset period and GDD accumulation for planting is initialized.  

First, the new subroutine was tested for a hypothetical rotation of two cash crops (spring wheat and sugar beet), 

allowing a green stubble to evolve over winter rather than simulating bare soil. Secondly, two realistic scenarios 

were tested for DE-RuS. From 2016 to 2017, planting was altered at DE-RuS from barley (here represented by the 280 

CFT for spring wheat) in 2016 to sugar beet in 2017 with a greening mix cover crop coverage (winter months 

2016/2017) in between. The catch crop was ploughed into the soil prior to the planting of sugar beet in 2017. In 

order to simulate this common cover cropping practice, we implemented a new CFT greening mix (or catch crop 

1). For this CFT, the CN allocation algorithm was changed in such way that, when the plant reaches maturity, the 

plant carbon and nitrogen are transferred to the soil litter pool and not allocated to the food product pool. For the 285 

years 2017 to 2019 at DE-RuS, the subroutines ability to simulate realistic crop rotation cycles was tested by 

changing the simulated CFT from sugar beet (2017) to winter wheat (2017-2018) and then to potatoes (2019). This 

possibility to change the CFT within the same year represents a significant improvement of CLM, since CLM5 

only permits land use changes at the beginning of every year.  

2.3 Study sites and validation data 290 

Table 2: ICOS and TERENO cropland study site location coordinates and altitude (Alt.), soil types, Köppen-Geiger climate 

classification (Peel et al., 2007), mean annual temperature (T), mean annual precipitation amounts (P) and reference. 

Site/ID Project Location 
Alt. 

[msl] 
Soil type Climate T [°C]* P [mm/a]* Ref. 
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Selhausen   DE-

RuS 

TERENO 

ICOS 

50.865°N 

6.447°E 
104.5 Luvisol 

Cfb - temperate 

maritime 
9.9 698 

Ney et al. 

(2017) 

Merzenhausen 
DE-RuM 

TERENO 
50.930°N 
6.297°E 

100 Cambisol 
Cfb - temperate 
maritime 

9.9 698 
Bogena et 
al. (2018) 

Klingenberg DE-

Kli 
ICOS 

50.893°N 

13.522°E 
478 Gleysoil 

Cfb – suboceanic, 

subcontinental 
8.1 766 

Grünwald 
(personal 

communica
tion, 2020) 

Lonzée       BE-

Lon 
ICOS 

50.553°N 

4.746°E 
167 Luvisol 

Cfb - temperate 

maritime 
10 800 

Buysse et 

al.(2017) 

* Reference periods: 1961-2010 for DE-RuS (adapted also for DE-RuM), 2005-2019 for DE-Kli and 2004-2017 for BE-Lon. 

Site-specific measurement records of latent and sensible heat fluxes, net ecosystem exchange (NEE), LAI, soil 

temperature and soil moisture were used as validation data. The sites (Selhausen, Merzenhausen, Klingenberg and 295 

Lonzée) were selected mainly for their excellent meteorological records and validation data. 

Selhausen (50.86589°N, 6.44712°E) is part of the TERENO Rur Hydrological Observatory (Bogena at al., 2018) 

as well as the Integrated Carbon Observation System (ICOS, 2020). The test site covers an area of approximately 

1 km x 1 km and is located in the lower Rhine valley (Bogena et al., 2018). Selhausen had a crop rotation of sugar 

beet (Beta vulgaris), winter wheat (Triticum aestivum) and winter barley (Hordeum vulgare), fewer times also 300 

rapeseed (Brassica napus) and potatoes (Solanum tuberosum) from 2015 to 2019. Cover crops such as oilseed 

radish or catch crop mixes are planted occasionally between two main crop rotations. Continuous records of 

meteorological variables, soil specific observations, greenhouse gas and energy fluxes are available for Selhausen 

since 2011. Regular LAI measurements are available since 2016 (Ney and Graf, 2018).  

Merzenhausen (50.93033°N, 6.29747°E) is located at approximately 14 km from Selhausen and is also part of the 305 

TERENO Rur Hydrological Observatory. The crop rotation of the site includes sugar beet (Beta vulgaris), winter 

wheat (Triticum aestivum), winter barley (Hordeum vulgare), rape seed (Brassica napus) and occasionally catch 

crops mixes. For Merzenhausen, continuous records of meteorological variables, soil specific observations and 

energy fluxes are available since 2011 and LAI measurements from 2016 – 2018. 

Klingenberg (50.89306°N, 13.52238°E) is an ICOS cropland site located in the mountain foreland of the 310 

Erzgebirge that is operated by the Technical University Dresden (TU Dresden) (ICOS, 2020; Prescher et al., 2010). 

The site is characterized as managed cropland with a 5-year planting rotation of rapeseed (Brassica napus), winter 

wheat (Triticum aestivum), maize (Zea mays), spring and winter barley (Hordeum vulgare) (Kutsch et al., 2010). 

Since 2004, data on ecosystem fluxes (including net ecosystem and net biome productivity), meteorological 

variables and soil observations are collected. Furthermore, biomass observations and agricultural management 315 

information are available for this site.  

The cropland site Lonzée (50.553°N 4.746°E) in Belgium is also part of ICOS (Buysse et al., 2017). It has been 

planted in a four-year rotation cycle with sugar beet (Beta vulgaris), winter wheat (Triticum aestivum), potato 

(Solanum tuberosum), winter wheat (Triticum aestivum) since 2000 with Mustard as a cover crop after winter 

wheat harvest (Moureaux, 2006; Moureaux et al., 2008). For Lonzée, continuous records of meteorological 320 

variables, EC flux data and LAI (GLAI and GAI) measurements are available from 2004 onwards. General 

information on the ICOS study sites such as climatic conditions, soil types etc. is provided on the ICOS Carbon 

Portal under the respective site codes (ICOS, 2020).  

At all sites, the application of mineral fertilizer and herbicides/pesticides as well as occasional application of 

organic fertilizer is regular management practice.  325 
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Figure 1: ICOS and TERENO cropland study sites Selhausen (DE-RuS), Merzenhausen (DE-RuM), Klingenberg (DE-Kli) and 

Lonzée (BE-Lon) 

Station data required to force CLM, i.e. meteorological variables (see following section) were measured as block 

averages over 10 minutes or at higher resolutions, gap-filled using linear statistical relations to nearby stations 330 

where possible (Alexander Graf, 2017), or otherwise, by marginal distribution sampling within the software 

package REddyProc (Wutzler et al., 2018). Fluxes required for model validation (i.e. net ecosystem CO2 exchange 

(NEE), latent heat flux (LE), sensible heat flux (H), soil heat flux (G) and gross primary production (GPP)) and 

net radiation (Rn), were either measured (G and Rn) or computed from turbulent raw measurements (frequency ≥ 

10 s-1) using the eddy-covariance method, for 30-minute block averages by the site PIs. Subsequently, gaps were 335 

filled and GPP estimated from NEE using REddyProc (Wutzler et al., 2018). More details on quality control, 

filling of longer gaps and by nearby stations, correction of soil heat flux and energy balance closure analysis are 

given in Graf et al. (in review) and specifically for DE-RuS and DE-RuM including LAI measurements in 

Reichenau et al. (2020). The long-term annual energy balance closures of the sites DE-RuS, DE-Kli and BE-Lon 

were approximately 79%, 77% and 76%, respectively, according to analyses in Graf et al. (in review) and 76% at 340 

DE-RuM according to an earlier study by Eder et al. (2015). All half-hourly meteorological and flux data were 

aggregated to hourly averages to match the customized CLM time step. Forcing variables were always used in 

gap-filled form, while validation variables were used in un-filled, quality-filtered form.  

3 Experimental design and analyses 

3.1 Model implementation 345 

For the single point study sites, CLM was run in point mode with only one grid cell and forced with site specific 

hourly meteorological data. 

The annual fertilization amounts at the single point study sites were adjusted according to documented amounts of 

applied fertilizer that ranged between 12 and 20 gNm-2. In CLM5, the potential photosynthetic capacity as well as 

the total amount of assimilated carbon during the phenology stages are regulated by the availability of soil nitrogen 350 

(Lawrence et al., 2018). With modern fertilization practices in Europe, nitrogen is not assumed to represent a 

limiting factor for the studied sites.  
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In order to balance ecosystem carbon and nitrogen pools, gross primary production and total water storage in the 

system, a spin-up is required (Lawrence et al., 2018). An accelerated decomposition spin-up of 600 years and an 

additional spin-up of 400 years was conducted for each site with the BGC-Crop module active (Lawrence et al., 355 

2018; Thornton and Rosenbloom, 2005). The resulting restart file at the end of the spin-up was then used as initial 

conditions for the following simulations.  

Table 3: Overview of conducted simulation test runs and scenarios for the three main modifications (1) winter cereal 

representation, (2) parameterization and (3) cover cropping scheme listing the respective sites, simulation periods, simulated 

CFTs, number of runs and different model versions and parameterizations that were run. CLM_D indicates the default model 360 

version, CLM_WW is the modified winter wheat model, and CLM_WW_CC is the modified winter wheat model extended 

with the cover cropping subroutine. The options d and m imply usage of the default or modified parameter set respectively.    

Site 
Simulation 

year(s) 
Simulated CFT Nr. of runs Model version Parameter set 

1 Winter cereal representation 

DE-RuS 2017/2018 Winter wheat 2 
CLM_D 
CLM_WW 

d 
m 

DE-RuM 2016/2017 Winter wheat 2 
CLM_D 

CLM_WW 

d 

m 

DE-Kli 
2005/2006 
2010/2011 

2015/2016 

Winter wheat 2 
CLM_D 

CLM_WW 

d 

m 

BE-Lon 

2006/2007 

2008/2009 
2010/2011 

2012/2013 

2014/2015 
2016/2017 

Winter wheat 2 
CLM_D 

CLM_WW 

d 

m 

2 Parameterization 

DE-RuS 2017 Sugar beet 2 CLM_WW 
d 

m 

DE-RuS 2019 Potato 2 CLM_WW 
d 

m 

DE-Kli 2018 Temperate corn 1 CLM_WW d 

BE-Lon 
2008 
2016 

Sugar beet 2 CLM_WW 
d 
m 

BE-Lon 

2010 

2014 

2018 

Potato 2 CLM_WW 
d 
m 

3 Cover cropping scheme 

DE-RuS 2016 – 2017 

Barley 

Cover crop 1  - greening mix  
Potato 

2 
CLM_D 

CLM_WW_CC 

d 

m 

DE-RuS 2017 – 2019 

Sugar beet 

Winter wheat 

Potatoes 

2 
CLM_D 
CLM_WW_CC 

d 
m 

 

To test the first modification, the implementation of the winter cereal representation, single point simulations were 

run with the default model version and with the modified model. The default model uses the standard and modified 365 

parameter set for winter wheat as input, while the modified model uses the modified parameter set for all winter 

wheat years. Simulations are performed for DE-RuS, DE-Kli, BE-Lon and DE-RuM (see Table 3). The modified 

CLM_WW is further used and extended in the subsequent steps.  

For testing of the second modification, the parameterization of sugar beet and potatoes, simulations were run with 

both the default and the modified parameter set for sugar beet and potatoes at the sites DE-RuS and BE-Lon. 370 

Furthermore, the default parameterization of the active CFT for corn was tested for the site DE-Kli (Table 3).  

The third modification, the cover cropping scheme, was tested for the cropland site DE-RuS (Table 3). In this step, 

the CLM_WW model was further extended with the cover cropping subroutine (CLM_WW_CC) and the 

simulations were run with the previously modified and tested parameter set of crop specific parameters. 
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CLM_WW_CC simulation results were then compared to default model simulation results (CLM_D) using site 375 

specific validation data.  

3.2 Evaluation of model performance 

For statistical evaluation of the model results, the root mean square error (RMSE), the bias (BIAS) and the Pearson 

correlation (r) were chosen as performance metrics:   

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑖 − 𝑋𝑜𝑏𝑠,𝑖)

2𝑛
𝑖=1 ,         (8) 380 

𝐵𝐼𝐴𝑆 = ∑ (𝑛
𝑖=1 𝑋𝑖 − 𝑋𝑜𝑏𝑠,𝑖)/∑ (𝑋𝑜𝑏𝑠,𝑖)

𝑛
𝑖=1 ,        (9) 

𝑟 = (
1

𝑛
∑ (𝑋𝑜𝑏𝑠,𝑖 ∗ 𝑋𝑖)
𝑛
𝑖=1 − 𝜇𝑠𝑖𝑚 ∗ 𝜇𝑜𝑏𝑠)/(𝜎𝑠𝑖𝑚 ∗ 𝜎𝑜𝑏𝑠),      (10) 

where i is time step and n the total number of time steps, Xi and Xobs,i  are the simulated and the observed values 

at every time step with µsim and µobs being the respective mean values. The standard deviation of simulation results 

and measurement data are represented by σsim and σobs respectively.  385 

The statistical evaluation was conducted for daily simulation output and daily observation data for the variables 

NEE, LE, H and Rn. 

4 Results 

4.1 Winter cereal representation 

For all study sites and simulation years, CLM_WW simulations resulted in a much better representation of the 390 

growth cycle and corresponding seasonal LAI variation and magnitudes compared with CLM_D simulations 

(Figures 2-5). As described by Lu et al. (2017), the default vernalization routine reaches a factor of 1 (fully 

vernalized) shortly after planting when the first frost occurs. This induced an unrealistically early commencement 

of the grain fill stage within two months after planting (November or December). The peak in LAI in the default 

version is also reached early in the year where photosynthesis is generally lower. The adapted CLM_WW 395 

vernalization routine produces lower initial vernalization factors which reduce the growing degree days. This leads 

to later onset of the leaf emergence and grain fill stage, in line with observations for all simulated study sites and 

years (Figures 2-5). While the planting date is the same for CLM_D and CLM_WW simulations, CLM_WW 

generally resulted in a better match of simulated and recorded harvest dates, compared with CLM_D simulations 

(1.5 to 2 months later than CLM_D), but harvest is still simulated slightly too early for all sites (Table 4).   400 
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Figure 2: Daily simulation results of (a) LAI, (b) LE and (c) H averaged over all winter wheat years (see Table 5) at the BE-

Lon site. Simulations were run with the default model version (CLM_D) indicated in orange and the modified model version 

(CLM_WW) indicated in blue. Site observation data on GLAI (all available observations plotted) and fluxes (averaged over 

all respective years) are indicated in grey. Corresponding performance statistics for daily simulation results are listed in Table 405 

5.  

For the BE-Lon site, CLM_WW simulated average LAI peak magnitudes, as well as seasonal LAI variations, are 

close to the observations of the green leaf area index (GLAI), with the exception of 2015, where unusually high 

GLAI values where observed in May and June, ranging from 5.40 to 6.38 m2/m2. The LAI peak of CLM_WW 

happens approximately one month too early compared to observations, and thus, the maturity of the crop is reached 410 

too early. This is also reflected in CLM_WW planting and harvest dates that are simulated approximately 1 month 

earlier than recorded dates. The CLM_WW simulated latent heat flux is underestimated after the crop cycle has 

ended in simulations compared to actual field conditions, where the crop is harvested later and thus more latent 

heat is generated on the field (Table 4, Figure 2). Although simulated maximum LAI generally correspond 

reasonable with observed values, the resulting crop yield is underestimated compared to site harvest records 415 

(Table 4). While CLM_D simulations underestimated the grain yield by approximately 85 – 90 %, CLM_WW 

underestimated yield by only 18 - 36 %. The CLM_WW simulated yields show only minimal variations with 

values from 8.12 to 8.16 t/ha whereas measured yields range from 9.92 to 12.88 t/ha. Therefore, CLM_WW did 

not capture the inter-annual differences in yield very well (Table 4).   

As observed for the BE-Lon site, CLM_WW overestimated early growing season LAI at the DE-RuS and DE-420 

RuM sites with the simulated peak and subsequent slow decline in LAI happening earlier than observed values 
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(Figure 3 and 4). At the DE-RuS site, the generally good correspondence in growing cycle and LAI of the 

CLM_WW simulation is also reflected in the resulting crop yield of 9.15 t/ha that is very close to the observed 

value of 9.2 t/ha, while CLM_D strongly underestimated yield (1.17 t/ha).  

 425 

 

Figure 3: Daily simulation results of (a) LAI, (b) LE and (c) H for the winter wheat year 2018 at the DE-RuS site. Simulations 

were run with the default model version (CLM_D) indicated in orange and the modified model version (CLM_WW) indicated 

in blue. Site observation data on LAI (all available observations plotted) and fluxes (averaged over all respective years) are 

indicated in grey. Corresponding performance statistics for daily simulation results are listed in Table 5. 430 
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Figure 4: Daily simulation results of (a) LAI, (b) LE and (c) H for the winter wheat year 2017 at the DE-RuM site. Simulations 

were run with the default model version (CLM_D) indicated in orange and with the modified model version (CLM_WW) 

indicated in blue. Site observation data on LAI (all available observations plotted) and fluxes (averaged over all respective 435 

years) are indicated in grey. Corresponding performance statistics for daily simulation results are listed in Table 5. 

For the DE-Kli site (Figure 5), site-specific observations of the LAI are not available. However, CLM_WW 

resulted in much more realistic magnitudes of LAI than CLM_D simulations. The generally lower LAI peak of 

CLM_WW compared to the other two sites is also reflected in lower crop yields for DE-Kli. Here, CLM_WW 

simulated crop yields match recorded yield data very well for the year 2011 and are overestimated for 2016 by 440 

approximately 16 %. CLM_D resulted in an underestimation of yield by more than 80 %.  
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 445 

Figure 5: Daily simulation results of (a) LAI, (b) LE and (c) H averaged over all winter wheat years (see Table 5) at the DE-

Kli site. Simulations were run with the default model version and the default parameter set (CLM_D) indicated in orange and 

the modified model version (CLM_WW) indicated in blue. Site observation data on LAI (all available observations plotted) 

and fluxes (averaged over all respective years) are indicated in grey.  Corresponding performance statistics for daily simulation 

results are listed in Table 5.  450 

The generally better representation of the winter wheat growing cycle by CLM_WW is also reflected in simulated 

NEE (Figure 6) and surface energy fluxes (Figures 2-5). In terms of net radiation, both CLM_WW and CLM_D 

are very close to the observations (Table 5). However, CLM_WW was able to better capture seasonal variations 

in cumulated monthly sums of surface energy fluxes during the growing cycle of the crop. The correlation 

coefficients for the energy fluxes (LE, H and Rn) calculated over the timeframe from recorded planting to harvest 455 

date (Table 4) improved for all sites (Table 5). Highest correlations were reached for the sites DE-Kli with r values 

of 0.62 and 0.71 and for BE-Lon with r values of 0.5 and 0.46 for sensible heat and latent heat flux respectively 

(Table 5). While the correlation of these variables is generally increased with the CLM_WW model, latent and 

sensible heat flux RMSE and biases are still relatively high, especially for the BE-Lon site, with corresponding 

low correlations. The high latent heat flux measured at BE-Lon in the later months of the year (from day 220 460 

onwards) reflects a second growth cycle of a cover crop. At both the BE-Lon site as well as at the DE-Kli site, 

catch crops are typically sown after harvest of winter wheat (mustard at BE-Lon, radish and brassica at DE-Kli) 

which strongly effects surface energy fluxes later in the year, whereas in CLM, the crop field is simulated as fallow 

(Figures 2 and 5). 
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Table 4: Simulated annual planting and harvest dates and grain yield [tDM/ha] by CLM_WW and CLM_D simulations 465 

compared to recorded harvest dates and grain yield (Obs) for all simulated winter wheat years at the sites BE-Lon, DE-RuS, 

DE-RuM and DE-Kli. For CLM simulation results, grain yield is calculated from grain carbon which is assumed to be 45 % of 

the total dry weight.  

Year Source  Planting date Harvest date Grain Yield [tDM/ha] 

BE-Lon 

2010/2011 

CLM_D 11.09.2010 10.05.2011 1.71 

CLM_WW 11.09.2010 05.07.2011 8.14 

Obs 14.10.2010 16.08.2011 10.64* 

2012/2013 

CLM_D 12.09.2012 19.04.2013 1.68 

CLM_WW 12.09.2012 25.06.2013 8.16 

Obs 25.10.2012 12.08.2013 12.88 

2014/2015 

CLM_D 09.09.2014 20.04.2015 1.71 

CLM_WW 09.09.2014 01.07.2015 8.15 

Obs 15.10.2014 02.08.2015 11.13 

2016/2017 

CLM_D 11.09.2016 02.05.2017 1.68 

CLM_WW 11.09.2016 24.07.2017 8.12 

Obs 29.10.2016 30.07.2017 9.92 

DE-RuS 

2017/2018 

CLM_D 29.09.2017 17.05.2018 1.17 

CLM_WW 29.09.2017 27.06.2018 9.15 

Obs 25.10.2017 16.07.2018 9.2 

DE-RuM 

2016/2017 

CLM_D 27.09.2016 15.05.2017 1.45 

CLM_WW 27.09.2016 30.06.2017 9.65 

Obs 17.10.2016 22.07.2017 - 

DE-Kli 

2010/2011 

CLM_D 15.09.2009 23.07.2011 1.19 

CLM_WW 15.09.2009 11.08.2011 7.53 

Obs 02.10.2010 22.08.2011 6.12 

2015/2016 

CLM_D 17.09.2015 24.07.2016 1.17 

CLM_WW 17.09.2015 28.07.2016 7.44 

Obs 18.09.2015 24.08.2016 7.48 

*: Grain yield estimated from 18.09 t/ha total biomass (stem and ear) yield according to stem and ear (grain) biomass yield 

ratios measured for other winter wheat years at the same site.  470 

CLM_WW was generally better able to match NEE observations compared to CLM_D due to the better 

representation of the seasonal LAI variations (Figure 6). Correlation improved (comparing CLM_WW to CLM_D) 

from 0.13 to 0.46 for BE-Lon, from 0.21 to 0.33 for DE-RuS and from 0.29 to 0.56 for DE-Kli. The resulting 

correlation for CLM_WW simulations is still relatively low due to an underestimation of the cumulative monthly 

NEE during seasons with high NEE at both sites. For DE-Kli, CLM_WW was able to match NEE observed at 475 

peak LAI very well. However, late seasonal NEE (July), shortly before harvest, is overestimated by CLM_WW 

resulting in a low overall agreement with observation data.  
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Figure 6: Comparison of (orange) CLM_D and (blue) CLM_WW simulated monthly NEE rates at the sites (a) BE-Lon, (b) 

DE-RuS, (c) DE-RuM and (d) DE-Kli for all respective winter wheat years. Available site observations are plotted as grey 480 

circles. For the sites BE-Lon and DE-Kli, simulation results as well as observation data is averaged over all simulated winter 

wheat years. 

Table 5: Bias, root mean square error (RMSE) and Pearson correlation coefficient (r) for the CLM_D and CLM_WW simulated 

daily NEE [umol CO2 W m-2 s-1], LE [W m-2], H [W m-2] and Rn [W m-2] at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli 

respectively. Values were calculated for the time between recorded planting and harvest dates (averaged over all winter wheat 485 

years at each site) using simulation output and observation data at daily time step. 

CFT WINTERWHEAT 

Site BE-Lon DE-RuS DE-RuM DE-Kli 

Year(s) 

2006/2007 

2008/2009 
2010/2011 

2012/2013 

2014/2015 
2016/2017 

2017/2018 2016/2017 
2010/2011 

2015/2016 

Model CLM_D CLM_WW CLM_D CLM_WW CLM_D CLM_WW CLM_D CLM_WW 

NEE 

Bias -0.87 -0.37 -1.01 -0.61 - - -0.56 0.50 

RMSE 6.34 4.96 7.73 7.58 - - 3.80 3.27 

r -0.13 0.46 0.21 0.33 - - 0.29 0.56 

LE 

Bias -0.72 -0.13 -0.47 -0.23 -0.55 -0.09 -0.47 -0.77 

RMSE 61.96 50.73 52.47 52.65 67.17 48.67 44.64 56.75 

r 0.35 0.46 0.21 0.24 0.50 0.67 0.61 0.71 

H 

Bias 5.56 1.35 4.24 1.70 -8.49 -2.74 4.99 3.10 

RMSE 45.97 27.63 40.93 39.94 47.26 32.81 49.30 35.08 

r 0.42 0.50 0.45 0.48 0.21 0.36 0.47 0.63 

Rn 

Bias -0.18 -0.05 -0.17 -0.13 -0.09 0.08 -0.03 -0.09 

RMSE 36.11 38.01 47.28 45.15 37.34 46.43 45.17 44.49 

r 0.80 0.81 0.68 0.69 0.78 0.97 0.71 0.73 
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4.2 Parameterization  

In order to test the new parameter sets, CLM_WW was used. Since the modifications made in CLM_WW do not 

affect the considered CFTs (i.e. corn, sugar beet and potatoes), the findings discussed in this section result solely 490 

from the usage of modified parameterization.  

 

Figure 7: Daily simulation results of (a) LAI, (b) LE, (c) H, and (d) monthly NEE rates averaged over all corn years (see Table 

6) at DE-Kli using the default parameterization (orange). Site observation data on LAI (all available observations plotted) and 

fluxes (averaged over all respective years) are indicated in grey. Corresponding statistical analysis is listed in Table 6.  495 

 

There is already a specific set of parameters available for the CFT temperate corn. This parameterization was 

tested for the site DE-Kli, where it resulted in a reasonable representation of seasonal LAI variation and magnitude 

(Figure 7). A moderate correlation was obtained for latent heat flux (0.56), with underestimation of latent heat flux 
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during the early growing cycle of corn, as well as for sensible heat flux (0.41). Similar to winter wheat at BE-Lon 500 

and DE-RuS, the simulated NEE shows a negative bias with an underestimation of peak NEE (Figure 7, Table 6).  

For the CFTs sugar beet and potatoes, the modified parameter set was tested for several years at BE-Lon and DE-

RuS. The performance in reproducing seasonal variations and magnitudes of energy fluxes was strongly improved 

with the modified parameter set. Correspondingly, simulations with the modified parameter set for both sugar beet 

and potatoes were able to reasonably capture seasonal variations and peak values of LAI as well as growth cycle 505 

length and harvest time (Figures 8 and 9). Whereas the default parameterization effectively reproduced the growth 

cycle and seasonal LAI variation of spring wheat, simulation results from the modified parameterizations better 

captured harvest date and growth cycle.  

The improved growth cycle representation with modified parameters also led to more accurate simulation of 

energy fluxes. For sugar beet at BE-Lon, the latent heat flux at peak LAI corresponds well with observed values 510 

while being underestimated before and after peak LAI and hence the sensible heat flux is overestimated at these 

times (Figure 8). Seasonal variations of energy fluxes and magnitudes were also captured much better in 

simulations with the modified parameterization. The simulations with modified parameters show slightly better 

net radiation correlations for both the sugar beet and potato CFTs at each site, compared to simulations with default 

parameters (Table 6). The correlation between simulated and observed latent heat flux for sugar beet were strongly 515 

improved by changing the parameters (0.11 to 0.55 for DE-RuS and 0.21 to 0.55 for BE-Lon). The same is true 

for the simulated sensible heat flux for sugar beet (0.04 to 0.76 for DE-RuS and 0.08 to 0.51 for BE-Lon site). The 

NEE for the sugar beet CFT is underestimated during peak LAI periods for the default parameterization, resulting 

in poorer correlations compared to latent and sensible heat flux and net radiation (Figure 8). Simulations with the 

modified parameter set resulted in a reduction in negative bias and reached higher correlation compared to the 520 

default parameterization (0.03 to 0.37 for DE-RuS and 0.05 to 0.64 for BE-Lon).  

Similar improvements can be observed for the new potato parameterization while the correlation of simulation 

results with observation data is generally lower compared to the sugar beet CFT (Table 6). Seasonal LAI variations, 

growing cycle length and corresponding energy flux variations are improved in simulations with the modified 

parameter set. Both the latent and the sensible heat flux are strongly improved at DE-RuS with correlation 525 

coefficients of 0.54 and 0.45 respectively for CLM_WW simulations. For BE-Lon, the improvement in correlation 

is slightly lower for both latent and sensible heat flux compared to DE-RuS. The seasonal variation of the NEE at 

BE-Lon is reasonably captured while monthly sums are overestimated with both parameterizations. The modified 

parameter set performed slightly better with an improved correlation of 0.58 compared to 0.43 with default 

parameterization (Table 6).  530 

 

https://doi.org/10.5194/gmd-2020-241
Preprint. Discussion started: 11 August 2020
c© Author(s) 2020. CC BY 4.0 License.



21 

 

Figure 8: Simulation results of (a-b) LAI and monthly averaged simulation results of (c-d) NEE, (e-f) LE, (g-h) H, (i-j) G and 

(k-l) Rn for all sugar beet years (see Table 6) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results for the default 

parameter set (orange) and the modified parameter set (blue) are compared to available site observations (grey) of LAI (all 535 

available observations plotted) and fluxes (averaged over all respective years). Corresponding performance statistics for daily 

simulation results are listed in Table 6.  
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Figure 9: Simulation results of (a-b) LAI and monthly averaged simulation results of (c-d) NEE, (e-f) LE, (g-h) H, (i-j) G and 540 

(k-l) Rn for all potatoes years (see Table 6) at the sites (left) BE-Lon and (right) DE-RuS. Simulation results run with the 

default parameter set (orange) and the modified parameter set (blue) are compared to available site observations (grey) of LAI 

(all available observations plotted) and fluxes (averaged over all respective years). Corresponding performance statistics for 

daily simulation results are listed in Table 6. 

  545 
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Table 6: Bias, root mean square error (RMSE) and Pearson correlation coefficient (r) for the simulated daily NEE [μmol CO2 

W m-2 s-1], LE [W m-2], H [W m-2] and Rn [W m-2] using the default (d) and the modified parameterization (m) for the CFTs 

corn (only default), sugar beet and potatoes at the sites BE-Lon, DE-RuS, DE-RuM and DE-Kli respectively. Values were 

calculated for the time between recorded planting and harvest dates (averaged over all respective CFT years at each site) using 

simulation output and observation data at daily time step. 550 

CFT CORN SUGARBEET POTATOES 

Site DE-Kli DE-RuS BE-Lon DE-RuS BE-Lon 

Year(s) 2007 2017 
2008  
2016 

2019 

2010  

2014  

2018 

Parameter 

set 
d d m d m d m d m 

NEE 

Bias -1.00 -0.59 -0.75 0.05 -0.05 - - 19.73 19.56 

RMSE 2.59 9.10 5.94 6.19 3.75 - - 5.24 5.21 

r 0.46 -0.03 0.37 0.05 0.64 - - 0.43 0.58 

LE 

Bias -0.33 -0.32 0.01 -0.37 -0.35 -0.28 0.25 0.26 0.09 

RMSE 37.82 58.44 24.47 60.09 48.31 60.94 50.58 43.41 40.05 

r 0.56 0.11 0.55 0.21 0.55 0.01 0.54 0.50 0.53 

H 

Bias -0.01 1.65 0.45 1.73 1.61 1.01 -0.38 0.50 0.22 

RMSE 39.21 42.77 17.24 39.75 33.45 51.61 29.90 34.06 31.17 

r 0.41 -0.04 0.76 -0.08 0.51 -0.10 0.45 0.18 0.31 

Rn 

Bias -0.12 -0.02 0.04 -0.11 -0.11 -0.04 0.04 - - 

RMSE 52.33 19.74 15.00 37.47 35.87 48.39 49.88 - - 

r 0.51 0.50 0.51 -0.22 -0.22 0.56 0.57 - - 

 

4.3 Cover cropping scheme 

The cover cropping scheme was tested for two fields of application: (1) simulation of a second crop growth onset 

within one year and simulation of a cover crop, and (2) a more flexible crop rotation between different cash crops.  

To test the first application of CLM_WW_CC, we simulated the cash crop and cover crop rotation cycle at DE-555 

RuS from 2016 to 2017 (Figure 11). A greening mix was planted in between the cash crop rotation of barley 

(adopted from the spring wheat CFT) in 2016 and sugar beet in 2017. While CLM_D simulated a perennial cycle 

of spring wheat, CLM_WW_CC was able to portray the crop rotation from barley to sugar beet in the following 

year as well as the coverage by a greening mix in between the cash crop cycles. Both, the simulation of a cover 

crop and the rotation of cash crops strongly improved the representation of LAI in CLM_WW_CC simulations 560 

over multiple years, especially during winter months (Figure 10). While in CLM_D simulations, the model 

assumed bare field conditions with no plant growth (LAI of 0) and very low latent heat flux, CLM_WW_CC 

simulated the plantation of a cover crop in fall of 2016, which leads to an increase in latent heat flux related to 

increased transpiration. Statistical evaluation of the simulated latent heat flux for the time window after harvest of 

the first cash crop from August 2016 to April 2017 shows that CLM_WW_CC reduced the negative bias from 565 

0.74 to 0.13 compared to CLM_D simulation results, resulting in an RMSE reduction by approximately 42 % 

(Figure 10). 
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Figure 10: (Top) Simulated LAI for barley (2016), greening mix (2016/2017) and sugar beet (2017) rotation at DE-RuS and 

(Bottom) corresponding monthly simulation results for the latent heat flux using the modified cover cropping subroutine 570 

CLM_WW_CC (blue) compared to the default phenology algorithm of CLM_D (orange). Corresponding bias, RMSE and r 

are given for the time window between the red dashed lines, calculated using simulation output and observation data at daily 

time step. Available observation data is plotted in grey.  

For the second case (DE-RuS), which represents a higher flexibility towards cash crop rotation, we simulated the 

years of 2017 to 2019. Here, the crop rotation switched from sugar beet in 2017 to winter wheat in 2017/2018 to 575 

potatoes in 2019 (Figure 11). While CLM_D was only capable of simulating a perennial spring wheat crop, 

CLM_WW_CC was able to represent the rotation between different cash crops on the same field, which resulted 

in a much better simulated LAI (by CLM_WW_CC) compared to CLM_D simulations. The improvement in 

simulated energy fluxes is in accordance with the results presented in the previous chapters (4.1 and 4.2) where 

results are analysed for each CFT respectively.   580 
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Figure 11: Simulated LAI for sugar beet (2017), winter wheat (2017/2018) and potatoes (2019) rotation at DE-RuS using the 

modified cover cropping subroutine CLM_WW_CC (blue) compared to simulation results for the same years with the default 

phenology algorithm of CLM_D (orange). Available observation data is plotted in grey.  585 

5 Discussion 

All three modifications that were implemented in this study helped to improve the representation of cropland sites 

in CLM5.  Similar to the findings of Lu et al. (2017) for CLM4.5, the implementation of their winter wheat routine 

resulted in a significant improvement in representing the seasonal LAI variations and surface energy fluxes during 

winter wheat growth. Next to maize and rice, wheat is one of the most important international food crops and 590 

among the most important cash crops in Germany (22.8 million tons winter wheat yield in 2019 nation-wide 

(Statista, 2020)). In Germany and other western European countries, winter cereal varieties (e.g. winter rye, barley 

and wheat) are more abundant than summer cereals due to climatic conditions (Palosuo et al., 2011; Semenov and 

Shewry, 2011; Thaler et al., 2012).  

Despite the general improvement of winter wheat growth and yield with the modified CLM_WW, there is still 595 

potential in further increasing the flexibility towards simulating different crop varieties and management practices. 

For example, the higher LAI captured at the DE-RuS site compared to BE-Lon was associated with a slightly 

higher simulated grain yield for DE-RuS, although recorded grain yield is lower compared to BE-LON (Table 4). 

This could be due to different management strategies such as fertilization application (timing, type and amount of 

fertilizer) or the usage of different winter wheat varieties that can show different responses to e.g. water or heat 600 

stress, frost and have different grain productivities (White and Wilson, 2006; Bergkamp et al., 2018; Ceglar et al., 

2019). Here, CLM5 is not flexible enough to represent the complex management practices concerning timing and 

type of fertilizer. In addition, CLM5 offers only one CFT for winter wheat representing all varieties. Whether this 

is an important limitation for regional or global scale simulations remains to be evaluated. In general, as already 

noted by Lu et al. (2017), a more process based vernalization and cold tolerance routine would be useful to make 605 

this subroutine more applicable to other winter crops like rapeseed.  

The observed overestimation of early LAI and underestimation of harvest date for winter wheat in CLM_WW 

(and CLM_D) simulations could be met by adjusting the minimum date for planting within the CFT 

parameterization. This could be useful to easily improve the crop cycle representation in regional simulations, 

where planting patterns are similar for larger agricultural areas. However it would restrict the flexibility of the 610 

model to prognostically simulate planting dates.  
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In general, the simulated plant growth and resulting yield were highly sensitive to plant parameters that govern the 

growing degree calculation which in turn influence the phenological development and allocation of C and N. With 

only a limited number of CFTs in CLM, a discretization of plant parameters or varieties on a regional scale is not 

possible at this point. A potential solution, without introducing additional CFT´s, could be to account for key 615 

parameters for each CFT varying with climate and soil conditions for large scale simulations (e.g. by gridded 

parameter sets). Furthermore, there is a need to evaluate and further discretise plant hydraulic properties (at this 

point one set of hydraulic parameters is applied to all types of crops) (Verhoef and Egea, 2014; Kennedy et al., 

2017; Kennedy et al., 2019). This could play a major role in improving the quality of the yield prediction by the 

model  (Bassu et al., 2014; Daniel Kennedy et al., 2019). These plant hydraulic properties could be estimated by 620 

inverse modelling or data assimilation. In addition, data assimilation of e.g. in situ or remotely sensed soil moisture 

data and/or LAI could play a major role in increasing the accuracy of regional yield predictions (e.g. Guérif and 

Duke, 2000; Launay and Guerif, 2005; de Wit and van Diepen, 2007; Fang et al., 2008; Vazifedoust et al., 2009; 

Huang et al., 2015; Jin et al., 2018).  

The default CLM5 does not account for the influence of weeds or cover crops and/or its litter on the carbon balance. 625 

There is a tool available for CLM5 that enables the simulation of transient land use and land cover changes 

(LULCC) (Lawrence et al., 2018). It was designed to simulate and study the effects of changing distributions of 

natural and crop vegetation, e.g. land use change from forest to agricultural fields (Lawrence et al., 2018), rather 

than inter-annual changes of agricultural management on crop vegetated areas. However, we found that it is not 

applicable to regional scale simulations for all 78 available CFTs with customized changes in crop vegetation 630 

types. Furthermore, this tool changes the CFT of each column on the 1st of January every year according to 

prescribed values (customized). Thus, when using the CLM5 land-use change tool, for example to simulate the 

crop rotation from sugar beet in 2017 to winter wheat in 2017/2018 at DE-RuS, winter wheat would not be planted 

before fall 2017 (rather than in the same year as sugar beet is harvested) resulting in a long period of fallow field 

when switching from summer to winter crop (Figure 12). Here, the implementation of our cover cropping routine 635 

enabled a second onset of plant growth within a year (including the switch to another CFT). This resulted in a 

pronounced improvement in LAI curves and latent heat flux, especially during winter months, by simulating the 

growth of a cover crop. It also proved to be beneficial in representing realistic agricultural field conditions by 

allowing crop rotations with higher flexibility than the default model. We anticipate that this modification will 

allow a more realistic representation of seasonal LAI in ecosystems and agricultural regions where cover cropping 640 

and crop rotations are common management practices. The application of this routine is also of interest for areas 

with several cash crop cycles within a year like multiple annual crop cycles in India and China (Biradar and Xiao, 

2011; Li et al., 2014; Sharma et al., 2015). We see further development potential for this routine and corresponding 

data sets to account for typical crop rotations and cover cropping scenarios for regional scale simulations (e.g. EU 

regulations and goals on the adoption of cover crops for climate change mitigation (Smit et al., 2019)).  645 

6 Conclusion 

The default CLM5 was extended by adopting the winter wheat representation of Lu et al. (2017), by including 

crop specific parameterization for winter wheat, sugar beet and potatoes and by the addition of a cover cropping 

subroutine that allows several growth cycles within one year. The model modifications were tested for the 

respective crops at four TERENO and ICOS cropland sites in Germany and Belgium, Selhausen (DE-RuS), 650 
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Merzenhausen (DE-RuM), Klingenberg (DE-Kli) and Lonzée (BE-Lon), for multiple years. The main results 

drawn from this study are as follows:  

 The implementation of the winter wheat subroutines led to a significant simulation improvement in terms of 

energy fluxes, leaf area index, net ecosystem exchange and crop yield (reduction of underestimation from 80 

– 90 % to 18 – 36 % at test site BE-Lon, good match for the test sites DE-RuS and DE-Kli in 2016 and slight 655 

overestimation at test site DE-Kli in 2011) 

 The model performance was strongly improved with the modified crop parameter sets for sugar beet and 

potatoes: seasonal variations and magnitudes of energy fluxes and LAI were better reproduced with RMSE 

reduction during the crop cycle by up to 57 % for latent and 59 % for sensible heat flux at test site DE-RuS. 

 In most cases the modification of CLM5 led to better reproduction of measured NEE at the test sites. However, 660 

the model showed a general weakness in reasonably simulating the NEE on agricultural fields, especially the 

peak value and post-harvest conditions. 

 The implementation of our cover cropping routine enabled a second onset of plant growth within a year and 

thus was able to better capture realistic field conditions after harvest. Winter time RMSE for latent heat flux 

was reduced by 42 %. Also, a higher flexibility in terms of crop rotations is now possible with CLM5.  665 

We anticipate that our implementation of the winter wheat representation and specified parameterization will 

markedly improve yield predictions at regional scale for regions with a high abundance of winter cereal varieties. 

The cover cropping routine offers an improved basis on which to study the effects of large scale cover cropping 

on energy fluxes, soil water storage, soil carbon and nitrogen pools, as well as to investigate the role of different 

cover crops as natural fertilizer in future studies with CLM5. A more realistic representation of post-harvest field 670 

conditions can play a crucial part in better representing the role of agriculture for regional and global energy and 

carbon fluxes and will be further developed and tested for regional scale simulations in future studies. 

Despite our improvements, there is still a need to further develop certain functionalities and specific routines 

regarding the crop representation and land management in CLM5 in order to achieve better model performance 

for agricultural land. Examples for improvements include: (1) a more detailed representation of agricultural 675 

management practices (e.g. tillage, C/N turnover, post-harvest surface conditions, fertilizer types and applications), 

(2) tools to account for spatial variability in plant physiological parameters, and (3) the discretization of plant 

hydraulic properties as opposed to using one parametrization for all crops.  

7 Appendix 

Table A1: Sowing and harvest dates at the ICOS and TERENO cropland study sites 680 

Site code Site Years Crop Sowing Harvest/plowing 

DE-RuS Selhausen 2015-2016 Winter barley 29.09.2015 10.07.2016 

  2016 Catch crop 22.08.2016 06.01.2017 

  2017 Sugar beet 31.03.2017 05.10.2017 

  2017-2018 Winter wheat 25.10.2017 16.07.2018 

  2019 Potato 26.04.2019 03.10.2019 

DE-RuM Merzenhausen 2016 Potato 12.04.2016 24.08.2016 

  2016-2017 Winter wheat 17.10.2016 22.07.2017 
  2017-2018 Rapeseed 30.08.2017 16.07.2018 

DE-Kli Klingenberg 2003-2004 Winter barley 06.09.2003 31.07.2004 

  2004-2005 Rapeseed 18.08.2004 02.08.2005 

  2005-2006 Winter wheat 25.09.2005 06.09.2006 
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  2007 Corn 23.04.2007 02.10.2007 

  
2008-2009 Winter barley 

25.04.2008 27.08.2008 

  12.09.2008 22.07.2009 

  2009-2010 Rapeseed 25.08.2009 24.08.2010 

  2010-2011 Winter wheat 02.10.2010 22.08.2011 

  2012 Corn 25.04.2012 18.09.2012 

  

2013-2014 Winter barley 
17.04.2013 24.08.2013 

  01.10.2013 20.07.2014 

  2014-2015 Rapeseed 21.08.2014 08.08.2015 

  2015-2016 Winter wheat 18.09.2015 24.08.2016 

  2016-2017 
Radish and 

Brassica catch crop 
01.09.2016 15.03.2017 

  2017-2018 Winter barley 02.04.2017 25.08.2017 

  2016-2017 
Radish and 

Brassica catch crop 
13.09.2017 13.04.2018 

  2018 Corn 02.05.2018 04.09.2018 

  2019 Bean 23.03.2019 18.08.2019 

BE-Lon Lonzée 2006-2007 Winter wheat 13.10.2006 05.08.2007 

  2008 Sugar beet 22.04.2008 04.11.2008 

  2008-2009 Winter wheat 13.11.2008 07.08.2009 

  2009 Mustard 01.09.2009 01.12.2009 

  2010 Potato 25.04.2010 05.09.2010 

  2010-2011 Winter wheat 14.10.2010 16.08.2011 

  2012 Corn 14.05.2012 13.10.2012 

  2012-2013 Winter wheat 25.10.2012 12.08.2013 

  2013 Mustard 05.09.2013 15.11.2013 

  2014 Potato 07.04.2014 22.08.2014 

  2014-2015 Winter wheat 15.10.2014 02.08.2015 

  2015 Mustard 26.08.2015 09.12.2015 

  2016 Sugar beet 12.04.2016 27.10.2016 

  2016-2017 Winter wheat 29.10.2016 30.07.2017 

  2017 Mustard 07.09.2017 08.12.2017 

  2018 Potato 23.04.2018 11.09.2018 

  2018-2019 Winter wheat 10.10.2018 01.08.2019 

 

Table A2: Default (d) and modified (m) phenology and CN allocation parameters for the CFTs temperate corn, sugar beet and 

potatoes (both with default parameters for the CFT spring wheat) and winter wheat. 

CFT Temperate corn Sugar beet Potatoes Winter wheat 

Parameter set d d m d m d m 

Variable Units Phenology  

min_NH_planting_date MMDD 401 401 401 401 401 901 901 

max_NH_planting_date MMDD 615 615 530 615 530 1130 1130 

planting_temp K 283.15 280.15 280.15 280.15 277.15 1000 1000 

min_planting_temp K 279.15 272.15 272.15 272.15 272.15 283.15 283.15 

gddmin °days 50 50 60 50 60 50 100 

mxmat days 165 150 180 150 180 330 400 

baset °days  8 0 0 0 0 0 0 

mxtmp °C 30 26 30 26 30 26 26 

hybgdd - 1700 1700 2000 1700 2000 1700 2000 

lfemerg % 0.03 0.05 0.05 0.05 0.05 0.03 0.03 

grnfill % 0.65 0.6 0.65 0.6 0.65 0.4 0.6 
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ztopmx m 2.5 1.2 0.5 1.2 0.5 1.2 1.2 

laimx m2/m2 5 7 6 7 6 7 7 

slatop m2/gC 0.05 0.035 0.02 0.035 0.02 0.035 0.028 

Variable Units CN ratios and allocation 

leafcn gC/gN 25 20 11 20 11 20 20 

leafcn_min gC/gN 15 15 8 15 8 15 15 

leafcn_max gC/gN 35 35 20 35 20 35 35 

frootcn gC/gN 42 42 42 42 42 42 43 

graincn gC/gN 50 50 50 50 50 50 15 

flnr fraction/gNm-2 0.29 0.41 0.15 0.41 0.15 0.41 0.3 
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Code availability. The modified model version CLM_WW_CC is available via GitHub: 

https://github.com/HPSCTerrSys/CTSM/tree/release-clm5.0-boas_ww_cc.  

 

Data availability. For the TERENO sites Selhausen (TERENO ID: SE_EC_001 and SE_BK_001) and 

Merzenhausen (TERENO ID: ME_EC_001, ME_BCK_001), all EC and meteorological data is freely available 690 

via the TERENO data portal TEODOOR (http://teodoor.icg.kfa-juelich.de/): Selhausen – ID SE_EC_001 

doi:20.500.11952/TERENO/00000004; Selhausen – ID SE_BDK_001 doi:20.500.11952/TERENO/00000068; 

Merzenhausen – ID ME_EC_001 doi:20.500.11952/TERENO/00000434; Merzenhausen – ID ME_BCK_001 doi: 

20.500.11952/TERENO/00000166. EC data for the ICOS study sites Lonzée (ICOS ID: BE-Lon) and Selhausen 

(ICOS ID: DE-RuS) is available via the ICOS data portal (https://www.icos-cp.eu/). Additional data on vegetation 695 

and management practices (e.g. LAI, NDVI, canopy heights etc.) were kindly provided by the respective site 

operators.  
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